In Situ Free Radical Growth Mechanism of Platinum Nanoparticles by Microwave Irradiation and Electrocatalytic Properties

نویسندگان

  • Gajendra Kumar Inwati
  • Yashvant Rao
  • Man Singh
چکیده

Microwave irradiation was employed for spherical-shaped platinum nanoparticle (Pt NPs) preparation. Spherical Pt NPs indexed with (111) facets were prepared using Pt(II) precursor salt, glycerol as solvent and reducing agent, and polyvinylpyrrolidone (PVP) as a shape directer under microwave irradiation for 3-5 min at 300 °C. Electron spin resonance (ESR) peak at 336.000 mT (milli Tesla) confirmed the free radical formation from aqueous glycerol solution which acted as reducing species under microwave. The 2-8-nm diameter of particles was obtained by high-resolution transmission electron microscope. Dynamic light scattering was used to optimize the microwave dose followed by 33 and 48 nm size and 51 and 67 mV zeta potential of Pt NPs, respectively. The PVP was demonstrated as shape controlling agent investigated by Fourier transmission infrared spectroscopy (FTIR). The electrocatalytic performance of as-prepared Pt colloids was investigated using cyclic voltammetry which showed a higher catalytic activity for ethanol redox reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrocatalytic properties of platinum and it's binary alloy with vanadium in oxygen reduction reaction(ORR)

The electrocatalysis of the oxygen reduction reaction (ORR) on carbon supportedPt-V (1:1) catalyst in polymer electrolyte fuel cells (PEFC) was investigated. Atan oxygen pressure of one atm an enhanced electrocatalytic property of Pt-V/Ccompared with Pt/C is revealed. These results indicate the occurrence of adifferent electrocatalytic mechanism for the ORR on Pt/C and Pt-V/C. Anincrease of mas...

متن کامل

One-pot three-component synthesis of tetrahydrobenzo[b]pyrans in the presence of Ni0.5Cu0.5Fe2O4 magnetic nanoparticles under microwave irradiation in solvent-free conditions

Ni0.5Cu0.5Fe2O4 magnetic nanoparticles using Arabic gel (AG) as a reducing and stabilizing agent was prepared by the sol-method. The catalyst identification was performed using Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM). The magnetic anal...

متن کامل

Preparation of PtNi Nanoparticles for the Electrocatalytic Oxidation of Methanol

heating which are conducive to homogenous nucleation and a shorter crystallization time [14]-[16]; factors which are generally believed to be the prerequisite to the formation of monodisperse nanoparticles. Furthermore, microwave heating has also been found to increase reaction kinetics by one to two orders of magnitude [16]-[18]. Thus microwave assisted synthesis could pave way for the prepara...

متن کامل

Ex-situ studies on calcinations of structural, optical and morphological properties of post-growth nanoparticles CeO2 by HRTEM and SAED

Nanocrystalline particles of Cerium Oxide (CeO2) have been prepared by the chemical precipitation method using Cerium nitrate and Urea with a molar ratio of 1:2. The results revealed that the formation of CeO2 fine particles is influenced by molar ratio of metal nitrates to fuel. Well faceted CeO2 nanoparticles, were synthesized by thermal-assisted dissociation ...

متن کامل

Ex-situ studies on calcinations of structural, optical and morphological properties of post-growth nanoparticles CeO2 by HRTEM and SAED

Nanocrystalline particles of Cerium Oxide (CeO2) have been prepared by the chemical precipitation method using Cerium nitrate and Urea with a molar ratio of 1:2. The results revealed that the formation of CeO2 fine particles is influenced by molar ratio of metal nitrates to fuel. Well faceted CeO2 nanoparticles, were synthesized by thermal-assisted dissociation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016